中学生数学

2017, No.559(07) 42+41

[打印本页] [关闭]
本期目录 | 过刊浏览 | 高级检索

三角形的一个判定定理及应用

高晗;

摘要(Abstract):

<正>众所皆知,平面几何中的三角形的三边关系为"三角形任意两边之和大于第三边,两边之差小于第三边",其等价于:命题若a、b、c是三角形的三边长,则(a+b-c)(b+c-a)(c+a-b)>0.此命题的逆命题也是一个真命题,它便可作为判定三角形的一个"判定定理",即定理若三个正数a、b、c满足(a+b-c)(b+c-a)(c+a-b)>0,则以a、b、c为边长可构成一个三角形.证明由(a+b-c)(b+c-a)(c+a-b)

关键词(KeyWords):

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 高晗;

Email:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享