中学生数学

2014, (01) 44-46

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

柯西不等式的证明及应用

顾家伟;王敏杰;

摘要(Abstract):

<正>高中数学学习中,不等式变形巧妙神奇,尤其是柯西不等式的应用.我梳理了一下有关柯西不等式的证明及应用,方便同学们使用.柯西不等式:(a1b1+a2b2+…+an bn)2≤(a21+a22+…+a2n)(b21+b22+…+b2n)(ai bi∈R,i=1,2…n).等号当且仅当a1=a2=…=an=0或bi=tai时成立(t为常数,i=1,2…n).柯西不等式的证明方法很多,下面的方法比较深刻且具通性.为简便,设ai不全为0.证法一(构造二次函数)f(x)=(a1x+b1)2+(a2x+b2)2+…+(an x+bn)2=(a21+a22+…+a2n)x2+2(a1b1+a2b2+…+an bn)x+(b21+b22+…+b2n).

关键词(KeyWords):

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 顾家伟;王敏杰;

Email:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享